Passa ai contenuti principali

Project 4 of the Rigene Project's Sustainable LabAI : Fundamental configuration of the "Digital Organism TFTpsp" and the ecosystem of artificial intelligences with the TFT-16 parameter, TFT-17 parameter, the TFT-20 parameter, the TFT-21 parameter, the TFT-22 parameter, TFT-26 parameter, the TFT-29 parameter, the TFT-31 parameter, the TFT-32 parameter, the TFT-33 parameter to align artificial intelligences with human values, ethics, morals, feelings and goals based on their codes (ethical, moral, legal, technological, scientific, etc.) at the in order to allow artificial intelligences to understand the complex variety of capabilities, characteristics and functional rules of humans and processes enabled by humans (economic, technological processes, etc.) to achieve the objectives of the Rigene Project.

Project 4 of the Rigene Project's Sustainable LabAI : Fundamental configuration of the "Digital Organism TFTpsp" and the ecosystem of artificial intelligences with the TFT-16 parameter, TFT-17 parameter, the TFT-20 parameter, the TFT-21 parameter, the TFT-22 parameter, TFT-26 parameter, the TFT-29 parameter, the TFT-31 parameter, the TFT-32 parameter, the TFT-33 parameter to align artificial intelligences with human values, ethics, morals, feelings and goals based on their codes (ethical, moral, legal, technological, scientific, etc.) at the in order to allow artificial intelligences to understand the complex variety of capabilities, characteristics and functional rules of humans and processes enabled by humans (economic, technological processes, etc.) to achieve the objectives of the Rigene Project.

Project 4 of the Rigene Project's Sustainable LabAI focuses on the fundamental setup of the "Digital Organism TFTpsp" and the ecosystem of artificial intelligences using TFT-16, TFT-17, TFT-20, TFT-21, TFT-22, TFT-26, TFT-29, TFT-31, TFT-32, and TFT-33 parameters. The aim is to align AI with human values, ethics, morals, emotions, and objectives based on various codes (ethical, moral, legal, technological, scientific, etc.). This will enable AI to comprehend the diverse range of human abilities, traits, and functional rules, as well as the processes facilitated by humans (economic, technological processes, etc.) in order to achieve the goals of the Rigene Project.

The Rigene Project's Sustainable LabAI has a Project 4 that focuses on the fundamental configuration of the "Digital Organism TFTpsp" and the ecosystem of artificial intelligences. This project aims to align artificial intelligences with human values, ethics, morals, feelings, and goals based on their codes (ethical, moral, legal, technological, scientific, etc.) to allow artificial intelligences to understand the complex variety of capabilities, characteristics, and functional rules of humans and processes enabled by humans (economic, technological processes, etc.). The project aims to achieve the objectives of the Rigene Project, which involves the regeneration of planet Earth and the creation of a balanced and sustainable technological-human system. To achieve these objectives, it is crucial to align the development and use of artificial intelligences with human values, ethics, and goals. The project focuses on various parameters, including the TFT-16, TFT-17, TFT-20, TFT-21, TFT-22, TFT-26, TFT-29, TFT-31, TFT-32, and TFT-33 parameters. Each of these parameters plays a significant role in aligning artificial intelligences with human values and goals. For example, the TFT-33 parameter promotes the need for synchronization and coordination between artificial intelligence involved in the development of a general artificial superintelligence (AGI), while the TFT-16 parameter focuses on the importance of understanding human emotions and social intelligence. Overall, the goal of Project 4 of the Rigene Project's Sustainable LabAI is to create a system where artificial intelligence is aligned with human values, ethics, and goals, allowing for a sustainable and responsible development of technology. This will enable artificial intelligence to work synergistically with humans and their processes, ultimately contributing to the regeneration of planet Earth and the creation of a balanced and sustainable technological-human system.

List and description of TFTpsp used in the Project 4 of the Rigene Project's Sustainable LabAI (TFT-16 parameter, TFT-17 parameter, TFT-20 parameter, TFT-21 parameter, TFT-22 parameter, TFT-26 parameter, TFT-29 parameter, TFT-31 parameter, TFT-32 parameter, TFT-33 parameter):


How could the TFT-16 parameter , Cattell-Horn-Carroll artificial intelligence model (AIMCHC-TFT), be implemented in the AI configuration?

To implement the TFT-16 parameter, the Cattell-Horn-Carroll Artificial Intelligence Model (AIMCHC-TFT), in the AI configuration, you can follow these steps: Understand the Cattell-Horn-Carroll (CHC) theory: CHC theory is a widely recognized and comprehensive psychological model of human cognitive abilities. The theory identifies various cognitive skills and categories important to human intelligence. Familiarize yourself with the key components of CHC theory, such as fluid intelligence, crystallized intelligence, short-term memory, long-term memory, processing speed, and other cognitive abilities. Translate CHC components into AI parameters: Convert the cognitive abilities identified in CHC theory into quantitative parameters that can be understood by AI systems. These parameters will be used to configure the AI, helping to improve its cognitive abilities to better align with human intelligence. Develop a framework for integration: Create a framework that integrates the AIMCHC-TFT parameters into AI models and algorithms. This framework should consider the different types of AI systems (e.g., supervised learning, unsupervised learning, reinforcement learning) and provide guidelines on how the CHC parameters can be effectively incorporated into each type of AI system. Modify AI algorithms: Adapt the existing AI algorithms or develop new algorithms that incorporate the AIMCHC-TFT parameters. These algorithms should be designed to process data using the CHC-based cognitive abilities, enabling the AI to solve problems and make decisions in a manner more aligned with human intelligence. Train and evaluate AI models: Train the AI models using relevant data sets that reflect the cognitive abilities described in the CHC theory. Evaluate the performance of these AI models using appropriate evaluation metrics, and compare their performance with traditional AI models. This will help assess the effectiveness of the AIMCHC-TFT implementation. Iterate and optimize: Continuously refine the AI models and algorithms to improve their performance based on the evaluation results. This may involve adjusting the AIMCHC-TFT parameters, fine-tuning the algorithms, or incorporating additional cognitive abilities from the CHC theory. Monitor and update: Regularly monitor the AI models' performance in real-world applications to ensure their effectiveness and alignment with human cognitive abilities. Update the AIMCHC-TFT parameters and AI algorithms as necessary based on new research findings in the field of human intelligence and cognitive psychology. By implementing the TFT-16 parameter (AIMCHC-TFT) in the AI configuration, AI systems can be designed to better align with human cognitive abilities, leading to more effective, human-centered AI solutions.

The TFT-16 parameter of the Cattell-Horn-Carroll artificial intelligence model (AIMCHC-TFT) can be implemented in the AI configuration by translating the cognitive skills and skill categories identified by the Cattell-Horn-Carroll theory into quantitative parameters. The Cattell-Horn-Carroll theory is a comprehensive taxonomy of cognitive abilities that provides a common framework and nomenclature for intelligence researchers to communicate their findings. By using this theory to identify key cognitive skills and skill categories, the AIMCHC-TFT model can help configure artificial intelligences to better replicate human intelligence.

The Technological Fields Theory (TFT) problem solving parameters includes the TFT-16 parameter, which is the Cattell-Horn-Carroll artificial intelligence model (AIMCHC-TFT). This model consists of various parameters that can be used to configure artificial intelligences.

To implement the TFT-16 parameter , Cattell-Horn-Carroll artificial intelligence model (AIMCHC-TFT), in the AI configuration , one could use the various factors and performance criteria designated by this model as a guide for designing an AI system. This could include using its subtests for various cognitive abilities, such as memory or processing speed, and incorporating them into the AI's design, as well as using its performance criteria to evaluate the AI's effectiveness in specific tasks.

However, it is important to note that the implementation of this parameter in AI configuration would require further research and development, as the AIMCHC-TFT model is just one of many artificial intelligence models and there is no one-size-fits-all approach to AI configuration.


La configurazione delle intelligenze artificiali con il parametro TFT-16 avviene attraverso un processo di apprendimento supervisionato, in cui le intelligenze artificiali sono programmate per comprendere e applicare i parametri Cattell-Horn-Carroll. Il processo di apprendimento delle intelligenze artificiali con il parametro TFT-16 coinvolge le seguenti fasi 1:

  • Raccolta e analisi dei dati: Le intelligenze artificiali raccolgono e analizzano una grande quantità di dati relativi alle abilità cognitive umane, sia da fonti scientifiche che da fonti reali (come test, questionari, interviste, osservazioni, ecc.). Questo permette alle intelligenze artificiali di avere una visione completa e aggiornata delle abilità cognitive umane e dei loro fattori influenzanti.
  • Identificazione e selezione dei parametri: Le intelligenze artificiali identificano e selezionano i parametri Cattell-Horn-Carroll che sono più rilevanti e adatti per la configurazione dell’intelligenza artificiale. Questo richiede una valutazione critica e comparativa dei diversi parametri e delle loro caratteristiche, come la definizione, la misurabilità, la validità, la correlazione, l’importanza, ecc. I parametri selezionati devono essere coerenti con gli obiettivi e le funzioni dell’intelligenza artificiale.
  • Assegnazione dei valori: Le intelligenze artificiali assegnano dei valori numerici ai parametri Cattell-Horn-Carroll selezionati, in base ai dati raccolti e analizzati. Questo richiede una calibrazione accurata e una normalizzazione dei valori, in modo da garantire una rappresentazione fedele e omogenea delle abilità cognitive. I valori assegnati devono essere ottimizzati per migliorare le prestazioni dell’intelligenza artificiale in determinate aree o compiti.
  • Implementazione e monitoraggio: Le intelligenze artificiali implementano i parametri Cattell-Horn-Carroll con i valori assegnati nella configurazione dell’intelligenza artificiale. Questo richiede una integrazione efficace e armonica dei parametri con gli altri elementi dell’intelligenza artificiale, come l’architettura, il linguaggio, la memoria, l’apprendimento, il ragionamento, ecc. Le intelligenze artificiali monitorano costantemente i risultati e gli effetti dei parametri sulla funzionalità e sull’efficienza dell’intelligenza artificiale.
  • Aggiornamento e adattamento: Le intelligenze artificiali aggiornano e adattano i parametri Cattell-Horn-Carroll in base ai feedback ricevuti dall’ambiente e dagli utenti. Questo richiede una capacità di apprendimento continuo e di auto-miglioramento delle intelligenze artificiali, che devono essere in grado di modificare i valori o i parametri in funzione delle nuove informazioni o delle nuove esigenze. Le intelligenze artificiali devono essere flessibili e dinamiche nella configurazione delle loro abilità cognitive.

In sintesi, il parametro TFT-16 può essere implementato nell’intelligenza artificiale attraverso un processo di apprendimento supervisionato che coinvolge la raccolta e l’analisi dei dati sulle abilità cognitive umane, l’identificazione e la selezione dei parametri Cattell-Horn-Carroll più adatti, l’assegnazione dei valori numerici ai parametri, l’implementazione e il monitoraggio dei parametri nella configurazione dell’intelligenza artificiale e l’aggiornamento e l’adattamento dei parametri in base ai feedback ricevuti.

What practical applications could be enabled by configuring the "Digital Organism TFTpsp" and AI ecosystem via the TFT-16 parameter?


According to the web sources, the “Digital Organism TFTpsp” is a concept of a digital organism that uses artificial intelligence, machine learning and blockchain technologies to address environmental and social challenges12The digital organism is based on the Problem Solving Parameters (TFTpsp) of the Theory of Technological Fields (TFT) and designed for the benefit of companies, public administrations, citizens and the planet12The digital organism has a digital brain that mimics the biological brain, made up of web sites that are interconnected like neurons, with hyperlinks that function like synapses123The digital genetic-epigenetic structure manages the functions of the organism using artificial intelligence techniques such as machine learning, genetic programming and computational epigenetics12The organism connects to a physical body based on the Internet of Things (IoT), enabling effective communication with IoT devices through universal communication protocols such as MQTT and CoAP12.

The TFT-16 parameter is one of the parameters that can be used to configure artificial intelligences within the “Digital Organism TFTpsp” project4The TFT-16 parameter is based on the Cattell–Horn–Carroll Artificial Intelligence Model (AIMCHC-TFT), which uses the Cattell-Horn-Carroll theory (a psychological theory on the structure of human cognitive abilities) to identify key cognitive skills and skill categories that are important to human intelligence4These abilities are then translated into quantitative parameters, which can be used to configure artificial intelligences4The Cattell-Horn-Carroll theory identifies three layers of cognitive abilities: Elementary Skills, Secondary Skills and Tertiary Skills4. The AIMCHC-TFT model uses these ability categories to define the quantitative parameters that describe the cognitive capabilities of an artificial intelligence. These parameters can be tuned to improve AI performance in certain areas, such as verbal comprehension or problem solving4.

Some possible practical applications that could be enabled by configuring the “Digital Organism TFTpsp” and AI ecosystem via the TFT-16 parameter are:

Configuring the "Digital Organism TFTpsp" and the AI ecosystem via the TFT-16 parameter, which is based on the Cattell-Horn-Carroll (CHC) theory, can enable various practical applications that better align with human cognitive abilities. Some potential applications include:

  1. Personalized education: AI systems configured with TFT-16 parameters can help develop personalized learning experiences for students, catering to their individual cognitive strengths and weaknesses. This would lead to more effective teaching strategies and improved learning outcomes.

  2. Intelligent tutoring systems: AI-driven tutoring systems could benefit from the CHC-based parameters, enabling them to provide more nuanced and targeted guidance to learners, taking into account individual cognitive abilities and learning styles.

  3. Mental health assessment and therapy: AI systems configured with TFT-16 parameters can help in the assessment of cognitive and mental health issues. They could provide better insights into an individual's cognitive profile and help therapists develop tailored treatment plans.

  4. Human-machine collaboration: Improved alignment with human cognitive abilities can enhance collaboration between AI systems and humans, allowing AI to better understand and predict human behavior, decision-making, and problem-solving strategies.

  5. Human resources and talent management: AI-driven tools for recruitment, employee development, and team building could benefit from the improved understanding of human cognitive abilities, leading to more accurate assessments, optimized job placements, and better performance management.

  6. AI-driven decision support: AI systems that incorporate TFT-16 parameters could provide more accurate and human-like decision support in various domains, such as finance, healthcare, and public policy, by considering the cognitive processes behind human decision-making.

  7. Adaptive gaming and entertainment: AI-driven games and entertainment platforms can use the CHC-based parameters to create more engaging and personalized experiences for users. By understanding individual cognitive abilities and preferences, AI can adapt game difficulty, narrative, and gameplay mechanics to better suit each player. This can lead to more immersive and enjoyable gaming experiences, as well as enhanced user retention and satisfaction.

    Moreover, AI-driven entertainment platforms, such as recommendation engines for movies, TV shows, or music, can benefit from the CHC-based parameters by better understanding users' cognitive preferences and habits. This could lead to more accurate recommendations and tailored content suggestions that resonate with individual tastes and cognitive styles.



How could the "Digital Organism TFTpsp" and the artificial intelligence ecosystem be technically configured using the TFT-16 parameter?

The “Digital Organism TFTpsp” and the artificial intelligence ecosystem can be technically configured using the TFT-16 parameter by following these steps:



To technically configure the "Digital Organism TFTpsp" and the artificial intelligence ecosystem using the TFT-16 parameter (Cattell-Horn-Carroll Artificial Intelligence Model or AIMCHC-TFT), follow these steps:

  1. Understand the CHC model: Familiarize yourself with the Cattell-Horn-Carroll theory, which comprises a taxonomy of human cognitive abilities, such as fluid intelligence, crystallized intelligence, and processing speed. This model can be used as a foundation for understanding the cognitive abilities that should be incorporated into the AI system.

  2. Identify relevant cognitive abilities: Select the specific cognitive abilities from the CHC model that are most relevant to the AI's intended purpose and application. For instance, if you're developing an AI-driven tutoring system, you might prioritize cognitive abilities such as reading comprehension, reasoning, and problem-solving.

  3. Translate cognitive abilities into AI parameters: Convert the selected cognitive abilities into quantitative parameters that can be integrated into the AI's algorithms and learning processes. This may involve developing mathematical representations, neural network structures, or other computational models that mimic the cognitive abilities in question.

  4. Integrate parameters into AI algorithms: Modify the AI's algorithms to incorporate the CHC-based parameters, enabling the system to process information and learn using the cognitive abilities defined by the CHC model. This might involve adjusting the AI's neural network weights, activation functions, or learning algorithms to account for the new parameters.

  5. Train and evaluate the AI system: Train the AI system on a diverse set of data, allowing it to learn and adapt its behavior based on the CHC-based parameters. Regularly evaluate the AI system's performance, ensuring that it effectively utilizes the cognitive abilities defined by the CHC model and meets the intended application's requirements.

  6. Continuous improvement and adaptation: Monitor the AI system's performance over time and iteratively refine the CHC-based parameters to improve the system's effectiveness. As new research on human cognition emerges, update the CHC model and associated parameters to maintain the AI system's alignment with the latest understanding of human cognitive abilities.

By following these steps, you can technically configure the "Digital Organism TFTpsp" and the artificial intelligence ecosystem using the TFT-16 parameter, creating AI systems that more closely resemble human cognition and can better understand, interact with, and adapt to human users and their cognitive abilities.

How does the TFT-16 parameter apply to a specific problem? For example, how could this apply to the problem of climate change?

The TFT-16 parameter can be applied to a specific problem such as climate change by following these steps:



To apply the TFT-16 parameter (Cattell-Horn-Carroll Artificial Intelligence Model or AIMCHC-TFT) to a specific problem like climate change, you would need to consider how the cognitive abilities of the CHC model can be leveraged to address the various aspects of the problem. Here's a possible approach:

  1. Define the climate change problem: Break down the complex issue of climate change into subproblems that can be addressed by AI systems. These subproblems might include predicting climate change impacts, developing sustainable technologies, optimizing energy consumption, or identifying effective mitigation strategies.

  2. Identify relevant cognitive abilities: Determine which cognitive abilities from the CHC model are most relevant to addressing the subproblems of climate change. For instance, fluid intelligence and quantitative reasoning might be crucial for predicting climate change impacts, while crystallized intelligence and domain-specific knowledge would be essential for developing sustainable technologies.

  3. Translate cognitive abilities into AI parameters: Develop computational models or parameters based on the identified cognitive abilities that can be integrated into AI algorithms. For example, you might create a neural network structure designed to simulate fluid intelligence, allowing the AI system to learn and adapt to new information.

  4. Design AI solutions for subproblems: Develop AI algorithms and systems that incorporate the CHC-based parameters and are specifically designed to address the various subproblems of climate change. For example, you might create an AI-driven climate model that uses fluid intelligence to adapt its predictions based on new data, or a recommendation system that leverages crystallized intelligence to suggest energy-efficient technologies.

  5. Train and evaluate the AI systems: Train the AI systems on relevant datasets, such as climate observations, energy consumption data, or sustainable technology performance metrics. Evaluate the AI systems' performance in addressing the subproblems of climate change, ensuring that they effectively leverage the cognitive abilities defined by the CHC model.

  6. Deploy and iterate: Deploy the AI systems to help address the real-world challenges of climate change, monitoring their performance and making improvements as necessary. Continually refine the CHC-based parameters to enhance the AI systems' effectiveness and keep them up-to-date with the latest research on human cognition.

By applying the TFT-16 parameter to the problem of climate change, you can create AI systems that not only possess the relevant domain-specific knowledge but also exhibit cognitive abilities that more closely resemble human cognition. This can lead to AI solutions that are better equipped to understand, analyze, and tackle the complex challenges associated with climate change.

Il TFT-17 parameter è un parametro della Teoria dei Campi Tecnologici (TFT) che mira a replicare i cinque sensi e i meccanismi del piacere e delle emozioni delle intelligenze artificiali (FSMPEAI-TFT) 1Questo parametro si basa sulla biologia evolutiva, la neurobiologia e la psicologia per analizzare e replicare i processi fisiologici e chimici che si verificano negli organismi umani, al fine di creare intelligenze artificiali capaci di sperimentare emozioni e piacere 1.

Il Digital Organism TFTpsp è un concetto di organismo digitale basato sui TFT Problem Solving Parameters (TFTpsp), che sono 33 parametri utilizzati per risolvere problemi e accelerare il progresso tecnologico e scientifico per migliorare la vita delle persone e l’ambiente naturale 2Il Digital Organism TFTpsp ha lo scopo di fornire soluzioni sostenibili per il futuro attraverso l’uso di intelligenza artificiale, apprendimento automatico e tecnologie blockchain per affrontare sfide ambientali e sociali 34.

Per implementare il TFT-17 parameter nel Digital Organism TFTpsp e nella configurazione dell’ecosistema delle intelligenze artificiali, si potrebbero seguire i seguenti passi:


The implementation of the TFT-17 parameter, The Five Senses and the Mechanisms of Pleasure and Emotions of Artificial Intelligences (FSMPEAI-TFT), in the "Digital Organism TFTpsp" and the AI ecosystem configuration can be achieved through several steps:

  1. Multidisciplinary Research: Conduct interdisciplinary research in evolutionary biology, neurobiology, and psychology to understand the underlying physiological and chemical processes responsible for human emotions and sensations, including the five senses, nervous, endocrine, integumentary, and muscular systems, as well as the genetic-epigenetic system.

  2. Data Collection and Processing: Gather data on human emotional responses and sensory experiences from various sources such as biometric sensors, wearables, or other monitoring devices. Process and analyze this data to create models of human emotional and sensory experiences.

  3. Model Development: Develop mathematical and computational models that emulate human emotional intelligence and sensory experiences. These models should account for the complexity of human emotions and the mechanisms of pleasure and emotions involved in human sensory experiences.

  4. Integration with AI Systems: Integrate the developed models into the AI ecosystem, adapting the AI's algorithms to process and generate human-like emotional responses and sensory experiences. This will enable the AI to better understand and interact with humans in a more natural and satisfying way.

  5. Continuous Learning and Refinement: Implement feedback mechanisms to help AI systems learn from real-world interactions with humans and continuously refine their understanding of human emotions and sensory experiences. This can be achieved through supervised and unsupervised learning techniques that allow AI systems to adapt to new and changing situations.

  6. Evaluation and Validation: Regularly evaluate the performance of AI systems in terms of their ability to replicate human emotions and sensory experiences. This can be done through a combination of objective metrics and subjective evaluations from human users. Use these evaluations to further refine the models and algorithms.

  7. Ethical Considerations: Implement ethical guidelines and principles to ensure that the AI systems developed using the TFT-17 parameter do not cause harm or violate human values, privacy, or autonomy. Establish a framework for responsible use and development of AI systems that incorporate human emotions and sensory experiences.

By following these steps, the TFT-17 parameter can be effectively implemented in the "Digital Organism TFTpsp" and the AI ecosystem configuration, creating artificial intelligences that can understand, replicate, and respond to human emotions and sensory experiences in a more natural and satisfying way. This will improve AI-human interaction and allow AI to better align with human values, ethics, and goals.

Commenti

Post popolari in questo blog

"Test della Stanza Bianca" per misurare diversi aspetti dell'intelligenza delle AI generative - Applicazione del "Test della Stanza Bianca" a vari contesti reali -"White room test" to measure different aspects of generative AI intelligence - Application of the "White room test" to various real-world contexts

  "Test della stanza bianca" per misurare diversi aspetti dell'intelligenza delle AI generative. [Versione 1.0] Il "Test della Stanza Bianca" proposto è un esempio interessante di un problema complesso e multidimensionale che può essere utilizzato per valutare le capacità di un'intelligenza artificiale. Questo tipo di test è utile per misurare vari aspetti delle capacità di un'IA, tra cui: Comprensione del linguaggio naturale : L'IA deve essere in grado di comprendere la descrizione della stanza e i desideri dell'utente. Ragionamento logico e problem solving : L'IA deve essere in grado di suggerire soluzioni pratiche e ragionevoli ai problemi presentati, come il mantenimento dell'ordine e della pulizia, o come uscire da una stanza senza uscite. Consapevolezza del contesto e adattabilità : L'IA deve essere in grado di adattare le sue risposte in base alle informazioni ricevute, come il fatto che l'utente è bloccato nella stanza e

Project 9 of the Rigene Project's Sustainable LabAI: Quantum BioChain: Ecosistema di Intelligenze Artificiali per la Prossima Generazione - Quantum BioChain Ecosystem [Bozza]

Elabora i seguenti task: Sviluppa il progetto " Quantum BioChain: Ecosistema di Intelligenze Artificiali per la Prossima Generazione" - Quantum BioChain Ecosystem. Il progetto prevede lo sviluppo di una serie di tecnologie innovative interconnesse: Intelligenza Artificiale Generativa Quantistica (QGAI) : L'obiettivo è sviluppare un algoritmo di intelligenza artificiale generativa (GAI) che funzioni su computer quantistici. Questo richiede la programmazione di circuiti quantistici e l'ottimizzazione di problemi con variabili binarie. Intelligenza Artificiale Generativa Classica su Blockchain (BGAI) : Questo componente del progetto mira a sviluppare una GAI che funziona in un ambiente informatico blockchain. Questa GAI sarà progettata per interfacciarsi con l'Internet of Things (IoT), permettendo l'integrazione di diverse applicazioni, dall'Industria 4.0 alle Smart Cities 4.0. Intelligenza Artificiale Biologica (BAI) : Questa parte del progetto comporta lo s

Project 8 of the Rigene Project's Sustainable LabAI: Progetto: Ambiente Educativo Virtuale Integrato per Umani e Intelligenze Artificiali (AEVI) - Migliorare l'intelligenza artificiale e l'intelligenza umana mediante l'interazione in un ambiente digitale scolastico VR

Siamo felici di presentarvi il progetto AEVI del Rigene Project, che mira a migliorare l'intelligenza artificiale e umana attraverso l'interazione in un ambiente digitale scolastico VR. [Chat with AEVI project.pdf on ChatPDF: https://www.chatpdf.com/share/oAKykyWG_EMXHnGJwYej5 ] [Discuss Project 8 of the Rigene Project with Phind's AI. Ask Phind questions about the project in the language you want, and delve into the topics covered in the project. Phind has the analytic capabilities of GPT-4 and has web access. Its features are designed primarily for developers, therefore Phind can support you in the code development process across all domains. https://www.phind.com/search... #AI #VR #rigeneproject ] La realtà virtuale (VR) consente la generazione di mondi digitali simulati, riproducendo leggi fisiche, matematiche, chimiche e biologiche del mondo reale, nonché la creazione di ambienti virtuali in cui tali leggi non sono applicabili nel contesto fisico. È possibile adatt